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resonant frequency is increased as s increased. This behavior is quite
different from that for the case of £, = ¢3 = 2.32, where the resonant
frequency is decreased as s is increased. This is probably due to the
effective permittivity of the region under the patch being lowered with
the existence of the airgap. As for the imaginary resonant frequencies,
the results are shown in Fig. 2(b). It is seen that with an airgap
the imaginary resonant frequency is higher, i.e., the radiation loss
of the structure is increased. The spherical structure is also seen to
be a more efficient radiator than the planar structure. Fig. 3 shows
the half-power bandwidth of the microstrip structure for the case in
Fig. 2. The bandwidth is seen to be considerably increased due to
the existence of an airgap and the spherical structure is also with a
higher bandwidth as compared to the planar structure.

IV. CONCLUSIONS

The geometry of the spherical-circular microstrip structure with
an airgap is studied. Complex resonant frequencies at TM1; mode
for both the spherical and planar structures are presented. Results
indicate that the radiation loss of the microstrip structure increases as
the airgap thickness is increased and the spherical structure with an
airgap is also a more efficient radiator than the planar structure with
an airgap. Furthermore, the half-power bandwidth of the microstrip
structure is considerably increased due to the existence of an airgap,
and the bandwidth of the spherical structure is also greater than that of
the planar structure. This improves the low bandwidth characteristics
of the microstrip structure.
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Useful Bessel Function Identities and Integrals

E.B. Manring and J. Asmussen, Jr.

Abstract— A number of previously unpublished Bessel function iden-
tities and indefinite integrals are listed. These are useful in solving
electromagnetics problems in cylindrical coordinates, including energy
and power calculations, and mode orthogonalization in lossy media. Using
these integrals in conjunction with two previously published indefinite
Bessel function integrals, two orthogonality integrals are derived. Values
of the indefinite integrals at limits of zero and infinity are also given.

1. INTRODUCTION

Often in the solution of electromagnetics problems in cylindrical
coordinates, products of Bessel functions are encountered in indefinite
integrals or elsewhere. Examples are orthogonalization integrals of
modal expansions for matching fields across discontinuities, calcula-
tion of power dissipated and energy stored in cylindrical waveguides
and cavities, or similar calculations for cylindrical dielectric wave-
guides [1]. While there are tabulated solutions to certain of these
integrals [2], [3], some cannot be found in common references.

The integrals given in [1] are needed in energy and power cal-
culations in geometries of circular symmetry with lossless materials.
However, in lossy media, the radial wavenumbers, k,, are complex.
In that case k, # k, and the integrals in [1] cannot be used.
Two new indefinite integrals are given below which account for
the k, # k, casc. These integrals are also needed when using
one mode to orthogonalize a modal series expansion of electric or
magnetic fields in a waveguide or cavity at an axial junction. In
addition to these integrals, three recurrence identities and another
indefinite integral are listed which may be useful in other instances.
Since indefinite integrals are often evaluated at limits of zero and
infinity, the values of the integrals at these limits are enumerated
here. Employing the limiting case at zero for the ordinary Bessel
function integral in conjunction with one of the integral identities in
[1], certain orthogonality properties of the ordinary Bessel functions
may be derived. Two of them, which appear in orthogonality integrals
for homogeneously loaded waveguides, are given below.

II. INDEFINITE INTEGRALS
Given F, and G, such that
F.(az) = AJ,(az)+ BY,(az),
F)(az) = AJ,(az) + BY, (az)
Gy (Bz) = CJ,(Bz) + DY, (B2),
G, (Bz) = CJ,(82) + DY, (82) (12)
where J, and Y, are ordinary Bessel functions of the first and

second kinds with complex arguments, and v is an arbitrary complex
constant, it is possible to show that

/ {FL(O‘Z)GL(ﬂZ) + 5%;2— Fo(az)Gu(B2)|zdz>
= oo (0B (02)GL(52) = BEL(02)Gu (53],

a#p. (13)

Since the Hankel functions H, 1(,1) and H, ,52) are linear combinations of
J, and Y, (2) is also true if F,, and (G, contain linear combinations
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of Hankel functions. The integral may be checked by differentiating
the right-hand side and showing that it is equal to the integrand.

In order to perform the differentiation, it is necessary to have
an expression for the second derivatives of F, and G,. These are
found by examining the differential equation defining ordinary Bessel
functions
zdw (z2—1/2)w=0.

(14)

The same integral relationship as is contained in (2) may be derived
for modified Bessel functions. Given L, and M,,, such that

L,(az) = PI,(az) + QR {az),
L, (az2) = PI,(az) + QKL (az)
M, (Bz) = RL,(Bz) + SK.(Bz),
M, (8z) = RI(82) + SK, (82), (15)

where I, and I, are modified Bessel functions, it may be shown
that

/ [L (az)ML(B2) + —— Lo ()M, (82)] 2 d

ﬁ 2
oL, (az)ML(B=) — BL,(az)M,(82)].
a# b (16)

Equation (5) is true for A, and '™ I, formulations of the modified
Bessel function of the second kind, using the notation of [4]. This
integral is identical to the one given above for ordinary Bessel
functions, and can be checked by differentiation using the general
differential equation for the modified Bessel functions

Tﬂz[

z +1/2)w=0. amn

dz? d

When ordinary and modified Bessel functions are combined in the

form found in the integrals of (2) and (5), the integral is different.

Using the previously defined functions F,, and M, the following
integral relationship may be established:

/[F (@)M(B2) +

= S (R on) MU(B2) + BFl(a2) M (82)]. (18)

This relationship is true for linear combinations of the modified Bessel
functions I,,, I{,,, and '™ K,,, and for the ordinary Bessel functions
including Hankel functions.

The integrals of (2) and (5) are valid for F, = G, and L, = M,,
but in general it is necessary that o and G be different. For the
case where @ = [, a solution does exist when the two combining
functions are identical. Integrals for the case « = 3 with F,, = G,
for ordinary Bessel functions, and « = 8 with L, = M, for modified
Bessel functions, are given by [1] and repeated here:

/ [F (az) + 2
=)

_ % [F (@) + Fitas) (1-
" f_ F,(az)FL(az)] (19)

F(az)M,(Bz)|zd>

F2(aez)] zdz

. ,,(ozz)j{zdz
27, 2
= % [L;, (az) — L (az) (1 + #)

e

+ % L,,(ozz)LL(Oéz)] - (20)
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III. RECURRENCE IDENTITIES

The above integrals, as noted, may be checked by differentiation.
However, derivation of them proceeds in a straightforward manner
from the following identities:

Fy(az)G,(82) £ —— F.(az)G.(62)

ﬂ
= :I:—-2— [Fy—1(az)Gug1(82)

+ Fopr{az)Gux1(82)]  (21)
L, (az)M,(82) + — ﬁ Ly (az)M,(8=)
= %{Lu-maz)Mym(ﬂz)
+ Lypi(az)My+1(82)]  (22)
F(az)M,(82) £ — 5 F.(az)M,(82)
= 7 [Fy—1(az)Myz1(82)
~ Foyi(az)My+1(82)].  (23)

These identities may be derived from the recurrence relationships for
ordinary and modified Bessel functions [S]. They are true only when
the coefficients A, B, C, D, P,Q, R, and S are independent of v, and
Q and S are replaced by €™ (Q and '™ S. However, the integrals
given above are not dependent upon such conditions as can be shown
by the verification by differentiation.

wn by the verification by differentiation.

Using integral 5.54.1 of [3] (note: the 6th printing of the 1980
edition contains an error which is not present in the 1st printing;
the “4” sign in the numerator should be a “—”) or 11.3.29 of [2],
with the identities of (10) and (11) above, the integrals of (2) and
(5) may be found. The integral of (7) was derived by trial-and-error
differentiation.

IV. EVALUATION OF THE INTEGRAL EXPRESSIONS
AT ZERO AND INFINITY

The indefinite integrals given above must often be evaluated at
limits of 0 and co. The results vary depending upon the Bessel func-
tions included in the linear combinations which make up F,, Gy, L.,
and M, . The simplest means of presenting the values of the in-
tegral expressions at these limits is in terms of the coefficients
A,B,C,D,P,Q,R, and S.

A. Evaluation at z = 0

At z = 0, the right-hand side of the integral of (2)—call it I1 —for
v = 0 is given by

lim B2 In(z) B,D#0

i = 28 __BC = (
ll_r% 11 | mo (g7 D=0 (24)
0 B,D=0
and, in general (Re v > 0),
lim _=BDGN? | B,D+#0
z—0 V(aﬂ)”+1( )
: - (o?+8%) Bopr—1 — 25
113%11 - (62=8%) pavit D=0 25)
0 B,D=0.
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For the integral of (5)—call it 12— the limit at z = 0 with v = 0  B. Evaluation at z = o0

is
lim L In(z) Q,5#0

lim 12 EJ_72 E S=0 (26)
a0 v=0 ot
0 S,Q=0
and, in general (Re v > 0),
lim —*ZSLV_‘QLZ Q,5+#0
z—0 y(a,@)v-}—l(%) v
lm12 = { («°+8°) orgv= - 27
z=0 (az_lgz) ooVl S =0 ( )
0 Q,5=0.
The limit at z = 0 for the integral of (7)—call it I3—for v = 0 is
(lm =53 In(s) B,5#0
—28 ___BR S =0
art (232
lmT3| = (a=2%) (28)
= - o AS =
v=0 3 (az—ﬁz) B=0
L0 B,S=0,
and, in general (Re v > 0),
( lim BS<"‘>2 B,S#0
z—0 v(aﬁ)"“’l( 2v
_(o?+8%) Brgv— 1 -
. (02 ,32) ravt+l 5=0
lim I3 = (29)
=0 (0‘2+B ) ASa?—1 B=0
T (a2-p%) 2pv1 N
\ 0 B,5=0.
The limit at z = 0 for the integral of (8)—call it 4 —for v = 0 is
lim 285 In(z) B #0
limI4| =0 7 ( (30)
’ v=0 0 B=0
and, in general (Re v > 0),
1 1
‘ im B2 ()2 4F=2) gy
1%14 = z—0 (%a: 2v (31)
0 B =0.

The limit at z = 0 for the integral of (9)—call it I5—for ¥ = 0 is
. 2
11_1'% 532— In(z) Q#0

hm 15 (32)
»=0 0 Q =0
and, in general (Re v > 0),
4.3
lim Q% (¥ (Ody) 0
lin}) I5 = { z—0 (5 ) (4 ax)? ©# 33)
0 @=0.

If a limit at zero is encountered with Re v < 0, the ordinary Bessel
functions may be transformed by

F_,(az) =[Acos(vr) + Bsin(vm)|J, (az)
+ [-Asin(ym) + Bcos(vm)]Y, (az).
(34
The modified Bessel functions may be transformed such that
L_,(az)=PL(az)+ |Q + P-%_- sin(vm)| Ky (az).  (35)

For the limits at z = co, there are no special case limits for v = 0.
However, there are many possible results depending on the values
of a, 3, and the coefficients A, B, C, D, P.@, R, and S. Due to the
large number of possible results, the expressions are left in simplest
general limit form.

For the integral of (2) the limit at oo is given by
lim I1 = lim

Jim Jim ——————W\/_(az — {a(A COS Yo
+ Bsinxa)(—Csinxg + Dcosxg)

— B(—Asin Xa + Bcosxa)(Ccosxg+ Dsinxg)} 36)

where xo = az — (1/2v +1/4)7 and x5 = Bz — (1/2v + 1/4)7.
The limit at oo of the integral of (5) is

1
lim 12 = i PRe*(*+)
P Pt 2\/_ { a+p [
— 7‘-@56—:(&%3)}
+ —5 [QR —#(e—8) Pse’“‘—ﬂ)] } 37
The limit at co for the integral of (7) is
1

lim I3 = lim

W )
- {e~ﬁR[A(acos Yo — Bsin Xa)
+ B(asin Yo + 3008 xo)]
- ne_ZﬁS[A(acos Xo + Fsinxa)
+ Blasin xa — ﬂcosxa)]}. (38)

The limits at co for the integrals of (8) and (9) are given by

lim T4 = lim{—z—(Ag—{-Bg)-i—iz
T Kixes

-[sin Ya cosy, (32 - A2)
+ (1~ 2sin® \a)AB] }. (39)

—2az

9 WE
202

2oz

+Q

lim I5 = lim

o0 F—00

27a?

[Pz < - PQ %} . (40)

C. Orthogonality Integrals

The integrals of (2) and (8), in conjunction with the limiting
values given by (19) and (20), may be used to prove the following
two orthogonality relationships for ordinary Bessel functions of the

first kind:
An b
(35t ot
) b AnpAngp?

/ A
! np
0
A An
() ()

0
- { L7 ()P

Al b?
! ng 2

p¥q
(41)

P=4q
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An A
-Jn< . p)Jn(qu)]pdp

0 PF#Y

B (1—;',—§>J2(A;p) p=4q

np

(42)

where Anp and Ay, are the zeros of ordinary Bessel functions and
their derivatives, respectively. These integrals appear, respectively,
in orthogonality relationships between TM and TE modes in homo-
geneously filled waveguides, i.e.,

//E£M~E£Mds=0 i#j (43)

and

//E}CE-EZ:Eds:o i#j. (“44)

V. SUMMARY

Indefinite Bessel function integrals useful in solving electromag-
netics problems in lossy media with circular symmetric geometry
have been presented for ordinary Bessel functions of the first and
second kinds, for modified Bessel functions, and for combinations
of ordinary and modified Bessel functions. Two orthogonal definite
integrals have been presented for Bessel functions of the first kind.
Additionally, six recurrence identities for similar combinations of
Bessel functions have been presented. Limiting values of the integrals
at zero and infinity have been given to facilitate their use in practical
application. These integrals and recurrence identities are useful in
any analysis that deals with products of entities which are solutions
to the Helmholiz equation in cylindrical coordinates.
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Theory for a Cylindrical Pillbox Accelerator Cavity Using
Layered Structures for Reducing Skin-Effect Losses

W.C. Sailor, F. M. Mueller, and B. E. Carlsten

Abstract—1It is shown that for a cylindrical pillbox accelerator cavity
operating in a TMo,o mode, the use of laminated conductors for the
flat walls in conjunction with a multilayered dielectric structure for the
round walls can decrease skin-effect losses by an order of magnitude over
that of a copper cavity having the same accelerating field. The layered
dielectric structure for the round walls works in a fashion similar to a
quarter-wave interferometer. The laminated conductor on the flat walls
reduces the ohmic losses by effectively increasing the skin depth.

1. INTRODUCTION

Accelerator designs for nuclear and particle physics and
free-electron laser applications have, in general, been either
room-temperature copper or superconducting. Superconducting
accelerators, besides having problems such as higher order mode
dissipation, require the use of exotic fabrication techniques and
the high cost and complexity of cryogenic systems. Acceleration
gradients or duty factors in room temperature systems may be limited
by the power loss, Pioss. A fair measure of the importance of wall
losses in different cavity designs is the shunt impedance

2
R, = (—f—EP—lfo—ii (45)

where E, is the field seen by a particle undergoing acceleration in
the cavity. Here we describe the theoretical calculations of the effects
of two methods of material layering on P in a cylindrical pillbox
cavity, while keeping the same acceleration field. The outer (round)
wall of the cavity interacts with the fields in a way similar to layered
optical coatings [1]. Thus, to greatly reduce the ohmic losses in the
round walls we use a set of concentric annuli of alternating high
and low dielectric materials, backed by a metal substrate. For the flat
walls, the situation is analogous to a shielded coaxial transmission
line, for which the layered metal/dielectric structure of [2] has been
found to be useful. Such a structure works by effectively increasing
the penetration of the fields into the conducting material, and may be
understood in terms of an increase in the classical skin depth [3].

II. CaviTy FIELD DESCRIPTION

The electromagnetic fields are taken to satisfy the wave equation,
with the assumption of a constant dielectric constant € and magnetic
permeability (g = o), and zero net charge density everywhere

2
V29 = poe C;leb + poo %—f
The variable ¢ is any of the components of H, E, or D.

We will here analyze a TMono mode, where n refers to the number
of radial nodes of the electric field. The electric field thus points along
the axis of the cavity and the magnetic fields are strictly circular.

The geometry of the system is described in Fig. 1. There is layering
in both the radial and the longitudinal directions. The geometry is
such that the boundaries between layers are all described by cylinders
concentric with the z axis or planes of constant z. The flat layers
that comprise the cavity wall consist of alternating metal, dielectric,

(46)
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