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resonant frequency is increased as s increased. This behavior is quite

different from that for the case of El = ez = 2.32, where the resonant

frequency is decreased as s is increased. This is probably due to the

effective permittivity of the region under the patch being lowered with

the existence of the airgap. As for the imaginary resonant frequencies,

the results are shown in Fig. 2(b). It is seen that with an airgap

the imaginary resonant frequency is higher, i.e., the radiation 10SS

of the structure is increased. The spherical structure is also seen to

be a more efficient radiator than the planar structure. Fig. 3 shows

the half-power bandwidth of the microstrip structure for the case in

Fig. 2. The bandwidth is seen to be considerably increased due to

the existence of an airgap and the spherical structure is also with a

higher bandwidth as compared to the planar structure.

IV. CONCLUSIONS

The geometry of the spherical-circular microstrip structure with

an airgap is studied. Complex resonant frequencies at TMII mode

for both the spherical and planar structures are presented. Results

indicate that the radiation loss of the microstrip structure increases as

the airgap thickness is increased and the spherical structure with an

airgap is also a more efficient radiator than the planar structure with

an airgap. Furthermore, the half-power bandwidth of the microstrip

structure is considerably increased due to the existence of an airgap,

and the bandwidth of the spherical structure is also greater than that of

the planar structure. This improves the low bandwidth characteristics

of the microstrip structure.
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Useful Bessel Function Identities and Integrals

E. B. Manring and J. Asmussen, Jr.

Abstract—A number of previously unpublished Bessel function iden-

tities and indefinite iutegrals are listed. These are useful in solving
electromagnetic problems in cylindrical coordhrates, including energy
and power calculations, and mode orthogonafization in Iossy media. Using

these integrals in conjunction with two prcvionsly published indefinite
Bessel function integrals, two orthogonafity integrals are derived. Values

of the indefinite integrals at limits of zero and infinity are also given.

I. INTRODUCTION

Often in the solution of electromagnetic problems in cylindrical

coordinates, products of Bessel functions are encountered in indefinite

integrals or elsewhere. Examples are orthogonalization integrals of

modal expansions for matching fields across discontinuities, calcula-

tion of power dissipated and energy stored in cylindrical waveguides

and cavities, or similar calculations for cylindrical dielectric wave-

guides [1]. While there are tabulated solutions to certain of these

integrals [2], [3], some cannot be found in common references.

The integrals given in [1] are needed in energy and power cal-

culations in geometries of circular symmetry with lossless materials.

However, in lossy media, the radial wavenumbers, kp, are complex.

In that case ,$P # k; and the integrals in [1] cannot be used.

Two new indefinite integrals are given below which account for

the kg # k; case. These integrals are also needed when using

one mode to orthogonalize a modal series expansion of electric or

magnetic fields in a waveguide or cavity at an axial junction. In

addition to these integrals, three recurrence identities and another

indefinite integral are listed which may be useful in other instances.

Since indefinite integrals are often evaluated at limits of zero and

infinity, the values of the integrals at these limits are enumerated

here. Employing the limiting case at zero for the ordinary Bessel

function integral in conjunction with one of the integral identities in

[1], certain orthogonality properties of the ordinary Bessel functions

may be derived. Two of them, which appear in orthogonality integrals

for homogeneously loaded waveguides, are given below.

II. INDEFINITE INTEGRALS

Given Fv and Gv, such that

Fv(az) = A.Jv(az) + BYv(cYz) ,

F;(cLz) = AJ; (cw) + BY;(w)

Gv(/?z) = CJz/(/3Z) + Dyu($z) >

G;(/3z) = C.J:(/?z) + DY;(@) (12)

where Jv and Y. are ordinary Bessel functions of the first and

second kinds with complex arguments, and v is an arbitrary complex

constant, it is possible to show that

ff #P. (13)

‘1) d Hs) are linear combinations ofSince the Hankel functions Hv an

Jv and Yv, (2) is also true if Fu and G“ contain linear combinations
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of Hankel functions. The integral may be checked by differentiating

the right-hand side and showing that it is equal to the integrand.

In order to perform the differentiation, it is necessary to have

an expression for the second derivatives of F. and G.. These are

found by examining the differential equation defining ordinary Bessel

functions

111. RECURRENCE IDENTITIES

The above integrals, as noted, may be checked by differentiation.

However, derivation of them proceeds in a straightforward manner

from the following identities:

z dzw
z ~+z~+(z%z)w=o.

The same integral relationship as is contained in (2) maybe derived

for modified Bessel functions. Given Lu and &fp, such that

Lu(aw) = FIU(az) + QA”V(CW),

L:(az) = P1:(Qz) + Q1{~(cEz)

M.(@z) = RI.(@)+ S1l-.(pz),

fvf:(~z) = RI:(pz) + sIf-; (pz) , (15)

where lU and l{V are modified Bessel functions, it may be shown

that

1[
L:(a2)M; (/3z) + * 1~.(az)&f.(Pz)Z d,z

.— * [c&(cuz)M;(@s) - pL;(cu)M.(/32)].

~#P. (16)

Equation (5) is true for Ku and e‘mu1{. formulations of the modified

Bessel function of the second kind, using the notation of [4]. This

integral is identical to the one given above for ordinary Bessel

functions, and can be checked by differentiation using the general

differential equation for the modified Bessel functions

~ dzw
z ~+z:–(zz+vz)w=o,~

(17)

When ordinary and modified Bessel functions are combined in the

form found in the integrals of (2) and (5), the integral is different.

Using the previously defined functions Fu and Lfu, the following

integral relationship may be established:

F;(cLz)Gj(/3z) + --$ FAG.
(14)

/[
F;(az)M; (/3z) +

V2

1
— Fv(a,z)Mu(~z) zdz
Ct,bzz

_ % [aFu(a,)M@) + /3F;(cw)hf.(Pz)] . (W—

This relationship is true for linear combinations of the modified Bessel

functions 1., 1{., and e’=” Ku, and for the ordinary Bessel functions

including Hankel functions.

The integrals of (2) and (5) are valid for Fu = Gu and Lv = hfr,

but in general it is necessary that m and /? be different. For the

case where ~ = ,8, a solution does exist when the two combining

functions are identical. Integrals for the case o = /3 with Fv = Gv
for ordinary Bessel functions, and a = ~ with Lv = lkfv for modified

Bessel functions, are given by [1] and repeated here:

1[
2

F;2 (aZ) + ~

1
F:(w) z dz

o! 22

——
[ ( ~)

; F;’ (w)+ I?;(cw) 1 –

1
+ : Fv(az)l?’;(az) (19)

= ++ [FV-I(CYZ)G/71( i?Z)

+ F.+ I(cxz)G..M (~z)] (21)

L;(w) M;(/3z) + & Lam.

= + [Lv-, (cYz)Mv+,(/?z)

+ Lv+, (az)M.+,(p’z)] (22)

F;(cuz)M; (/3z) +
v’

— Fv(clz)kfv(pz)
f@~2

= + [Fv-,(w)m+l (0.z)

– Fu+I(C!Z)~V~I (/3z)] . (23)

These identities may be derived from the recurrence relationships for

ordinary and modified Bessel functions [5]. They are true only when

the coefficients A, B, C, D, P, Q, R, and S are independent of v, and

Q and S are replaced by .2”VQ and .’TVS. However, the integrals

given above are not dependent upon such conditions as can be shown

by the verification by differentiation.

wn by the verification by differentiation.

Using integral 5.54.1 of [3] (note: the 6th printing of the 1’980

edition contains an error which is not present in the 1st printing;

the “+” sign in the numerator should be a “-”) or 11.3.29 of [2],

with the identities of (10) and (11) above, the integrals of (2) and

(5) may be found. The integral of (7) was derived by trial-and-error

differentiation.

IV. EVALUATION OF THE INTEGRAL EXPRESSIONS

AT ZERO AND INFINITY

The indefinite integrals given above must often be evaluated at

limits of O and co. The results vary depending upon the Bessel func-

tions included in the linear combinations which make up F“, G., L.,
and &fu. The simplest means of presenting the values of the in-

tegral expressions at these limits is in terms of the coefficients

A, B, C, D, P, Q,R, and S.

A. Evaluation at z = O

At z = O, the right-hand side of the integral of (2)—call it Ii—-for

v = O is given by

~i=~ 11 =

‘1

-$* ‘=0
(24)

V=o

o B,D=O

and, in general (Re v > O),

{

lim
–BD(v!)2 B,D#O

%-o v(ap)”+l( + )2”

krno 11 = (@2+P’2) Bcp”-’ D=O (25)
(az–g?z) ~a.+l

(0 B> D=O.
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For the integral of (5)—call it 12— the limit at z = O with v = O B. Evaluation at z = m

is For the limits at z = co, there are no special case limits for v = O.

‘{

@~ln(. z) Q,S#O However, there are many possible results depending on the values

of Q, ~, and the coefficients A, B, C, D, P, Q, R, and S. Due to the

~iyo 12 =
{* ‘=0

(26) large number of possible results, the expressions are left in simplest

.=0 general limit form.

o S,Q=O For the integral of (2), the limit at cc is given by

and, in general (Re v > O), lim 11 = lim
2

{
O(A Cos ~a

~-~

/

lim
–QS(V!)2

Q,S#O
‘+W ~@(Q2 – 82)

‘+0 ~(@6)”+1( + )2”
+ Bsin~.)(–Csin X~ + DCOSX6)

lim 12 = (az+p’) QRP.-l
S=o (27)

,+0 (az–pz) Za.+l }
- ~(–Asinya + Bcosxa)(Ccos~P + llsin~p) (36)

(’o Q,S=O.
where X. = w – (1/2v + l/4)7r and xp = ,8z – (1/2v + l/4)7r.

The limit at cm of the integral of (5) is
The limit at z = O for the integral of (7)—call it 13—for v = O is

(

1

{[

1 A p~ez(.+fl)
lim~ln(z) B,S#O lim 12 = lim — —
,+0 .--m .–-2@ a!+/3 T

‘(
+ BR

am (Oz-pz)
S=o

li~ 13 = (28)
z--) ~ AS

I/no
P (.A/?2)

EI=(I

o B, S=O.

rrQSe –~(@+L2—

1

+ & [QRe-z(a-~) _pSeZ(C-F) 1}
. (37)

and, in general (Re v > O), The limit at cc for the integral of (7) is

I

lim
BS(UI)2 B,S#O lim 13 = lim

2-0 .(ap)v+l( + )2” z-m ‘-m @ (:’+ 02)

(CY2+6’ ) Lmp.-l
{ [

‘PR A(cYcosy~ – ~sinx~)
(az-pz) ~a.+l S=o e

lim 13 = (29)
7-0 (@2+p2) A~@V-l

+ B(Qsiny@ + /3cos ~.)]
——— B=O

‘z~s [A(Q cos X@ + /j sin h)(a2-/32) Zp.+1 — 7re

o B,s=o. + B(crsin~@ – ~cos%m)]}. (38)

The limit at z = O for the integral of (8)—call it 14—for v = O is

1{

The limits at m for the integrals of (8) and (9) are given by

lim ~ln(z) B#O
lim 14 =

,-0
{((30) @_14 = j~ir : A’+ B2) + ~

,+0
ZJ=o o B=o . [sin YG Cosy. (B2 - A’)

and, in general (Re v > O),
.

{

lim B2($-)
lim 14 =

2(+-+) B#O
z-o (+a=y’” (31)

z-o

o
[

2m2

B=O. lim 15 = lim P2 ~

The limit at z = O for the integral of (9)—call it 15—for v = O is ‘–m ‘-m
2rra2

1{li~li~ln (z) Q#o
lim 15 = (32)
:+0

.:0 0 Q=o

and, in general (Re v > O),

If a limit at zero is encountered with Re v <0, the ordinary Bessel

functions may be transformed by

F-v(a.z) = [A COS(VT)+ B sin(wr)]i7~(cw)

+ [–A sin(zm) + B cos(rm)]Y~(a:) .

(34)

The modified Bessel functions may be transformed such that

,.- \ ,

+ (1 - 2sin2 X@)AB] } . (39)

—2m,z xe
+Q —

2Q2 1
–PQ; . (40)

C. Orthogonality Integrals

The integrals of (2) and (8), in conjunction with the limiting

values given by (19) and (20), may be used to prove the following

two orthogonality relationships for ordinary Bessel functions of the

first kind:

.++.(+’,)],,,

-{

o P#!7
— (41)

+ [bJi(&)]2 P = q
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(0 P+q

‘p+f-)w,,,,=,(42)

where &P and ALP are the zeros of ordinary Bessel functions and

their derivatives, respectively. These integrals appear, respectively,

in orthogonality relationships between TM and TE modes in homo-

geneously filled waveguides, i.e.,

! E;M . E;M ds = O i$.i (43)

and

1E:E ,E:Eds=O i#~. (44)

V. SUMMARY

Indefinite Bessel function integrals useful in solving electromag-

netic problems in lossy media with circular symmetric geometry

have been presented for ordinary Bessel functions of the first and

second kinds, for modified Bessel functions, and for combinations

of ordinary and modified Bessel functions. ‘Iivo orthogonal definite

integrals have been presented for Bessel functions of the first kind.

Additionally, six recurrence identities for similar combinations of

Bessel functions have been presented. Limiting values of the integrals

at zero and infinity have been given to facilitate their use in practical

application. These integrals and recurrence identities are useful in

any analysis that deals with products of entities which are solutions

to the Helmholtz equation in cylindrical coordinates.
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Theory for a Cylindrical PMbox Accelerator Cavity Using
Layered Structures for Reducing Skin-Effect Losses

W. C. Sailor, F. M. Mueller, and B. E. Carlsten

Abstract—It is shown that for a cylindrical pillbox accelerator cavity

operating in a TMOnO mode, the use of laminated conductors for the
flat walls in conjunction with a multilayered dielectric strncture for Itbe

round walls can decrease skin-effect losses by an order of magnitude over
that of a copper cavity having the same accelerating field. The layered
dielectric structure for the round walls works in a fashion similar to a
quarter-wave interferometer. The laminated conductor on the flat wnlls
reduces the ohmic losses by effectively increasing the skin depth.

I. INTRODUCTION

Accelerator designs for nuclear and particle physics and

free-electron laser applications have, in general, been either

room-temperature copper or superconducting. Superconducting

accelerators, besides having problems such as higher order mclde

dissipation, require the use of exotic fabrication techniques and

the high cost and complexity of cryogenic systems. Acceleration

gradients or duty factors in room temperature systems maybe limited

by the power loss, P1O,,. A fair measure of the importance of wall

losses in different cavity designs is the shunt impedance

(45)

where E, is the field seen by a particle undergoing acceleration in

the cavity. Here we describe the theoretical calculations of the effects

of two methods of material layering on I’lo,, in a cylindrical pillbox

cavity, while keeping the same acceleration field. The outer (round)

wall of the cavity interacts with the fields in a way similar to layered

optical coatings [1]. Thus, to greatly reduce the ohmic losses in the

round walls we use a set of concentric annuli of alternating high

and low dielectric materials, backed by a metal substrate. For the ilat

walls, the situation is analogous to a shielded coaxial transmission

line, for which the layered metal/dielectric structure of [2] has been

found to be useful. Such a structure works by effectively increasing

the penetration of the fields into the conducting material, and may be

understood in terms of an increase in the classical skin depth [3].

II. CAVITY FIELD DESCRIPTION

The electromagnetic fields are taken to satisfy the wave equation,

with the assumption of a constant dielectric constant e and magnetic
permeability (p = ~.), and zero net charge density everywhere

(46)

The variable @ is any of the components of H, E, or D.
We will here analyze a TMo~o mode, where n refers to the number

of radial nodes of the electric field. The electric field thus points alcng

the axis of the cavity and the magnetic fields are strictly circular.

The geometry of the system is described in Fig. 1. There is layering

in both the radial and the longitudinal directions. The geometry is

such that the boundaries between layers are all described by cylinders

concentric with the z axis or planes of constant z. The flat layers

that comprise the cavity wall consist of alternating metal, dielectric,
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